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ABSTRACT: Advances in imaging technology aflow unprecedented access to the
anatomy and physiclogy of the living, growing human brain. Anatomical imag-
ing studies of individuals with attention deficit/hyperactivity disorder (ADHD)
consistently point to involvement of the frontal lobes, basal ganglia, corpus cal-
losum, and cerebellum. Imaging studies of brain physiology also support
involvement of right frontal-basal ganglia circuitry with a powerful modulato-
ry influence from the cerebelium. Although not currently of diagnostic utility,
further extension and refinement of these findings may offer hope for greater
uiderstanding of the core nature of ADHD and possible subtyping to inform
treatment interventions.
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INTRODUCTION

Family,!-2 twin,>* and adoption® studies all support a biological basis for atten-
tion deficit/hyperactivity disorder (ADHD), although identification of the specific
neuroanatomical substrates have only been possible with recent advances in neu-
roimaging. Early ADHD imaging studies using computerized tomography were lim-
ited by lack of quantitative measures, poor spatial resolution, and relatively small
sample sizes of inconsistently characterized subjects. Also, the use of jonizing radi-
ation in these technologies precludes their ethical use in healthy children, making it
difficult to acquire valid comparison groups. It is not surprising then that the results
of these carly studies, summarized in TABLE 1, are inconsistent with later findings.

Magnetic resonance imaging (MRI), with its lack of ionizing radiation and capac-
ity to provide exquisite anatomical detail, is the imaging modality of choice for pedi-
atric studies. The safety of the procedure allows not only scans of children but also
even repeated scans of the same children over time. This capacity for longitudinal
studies is critical to exploring maturational trajectories of the developing human
brain. Anatomic MRI studies have found anomalies in total cerebral volume, corpus
callosum, basal ganglia, and cerebellum. Results of ADHD MRI studies are summa-
rized in TABLE 2.

Functional imaging studies, including those using positron emission tomography
(PET), functional MRI, and Xenon inbalation, generally support the anatomical
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Tasie L. Computerized tomography studies of attention deficit/hyperactivity disorder
Study Patients Control Findings Comments
Subjects
Bergstrom & 46 (minimal brain None 33% had Qualitative;
Bille, 1978%  dysfunction) “abnor- criteria
mal” ven-  unspecified, no
tricles contrast group;
diagnosis vague 2
o
Thompson 44 (minimal brain None 4.5% Diagnosis hetero- E
et al., 1980%  dysfunction) abnormal geneous; quantita- S
tive measures, no
contrast group
Caparulo 14 (DSM-3 ADD) None 28% Structured
et al., 1981 67 abnormal interviews for
diagnosis;
qualitative
measures; no -
contrast group g
153
Reiss et al., 7 (DSM-3 ADD) 19 VBR Quantitative; .2
198368 (Neurological  larger results not given "i
patients) for ADD subgroup =
Shaywitz 35 (DSM-3 ADD) 27 None Quantitative §
et al., 19832 g
Nasrallah 24 (Hyperkinetic/ 27 None No guantitative E
et al., 198632 minimal brain differences a4
dysfunction) E -cé
= | R
g
i
implications of dysfunction in neural circuitry involving the frontal lobes, striatum, £
and cerebellum. Results of functional imaging studies are summarized in TABLE 3. >3
ANATOMIC BRAIN IMAGING STUDIES OF ADHD 'E
w
Total Cerebral Volume ,%m
80 |
Although the total size of the human brain is already 90-95% that of an adult by E E
first grade,® the subcomponents of the brain continue to undergo dynamic changes @4
throughout childhood and adolescence. White matter volume increases linearly, g
reflecting increasing myelination,1O and gray matter volume increases until early-to- §
mid-adolescence before decreasing during late adolescence, presumably from contin- @
ued synapti ing.!"12 Brain size is highly variable with h fold dif- g
synaptic pruning. rain size is highly variable with as much as a tworold di &
ference even among healthy people matched for age, sex, height, and we,ighi:.13 Total 2
brain size in ADHD subjects is approximately 5% smalier than in age- and gender- & 3
matched controls.! Thus, analyses of regional brain abnormalities should also con- =
trol statistically for differences among individuals in total brain volume, ?referably o
by using analyses of covariance rather than simple ratios or proportiom,]l although =
most of the studies summarized below have not done so. P
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TABLE 3. Single photon emission tomography studies using inhaled 133X enon

Study Patients Control Findings Comments
Subjects
Lou n=13(1F) n=9, Frontal hypoperfusion Contrast group 2.4 yrs
etal., 11 w/ mixed mostly in all ADD; caudate older on average;
198474 ADD; 8 siblings  hypoperfusion in 7/11 ADD group very
“dysphasic” (K] w/ ADD; central perfu-  heterogeneous

sion increased in 6/6
after methylphenidate

(MPH)
Lou n =6 “pure same 9 “Pure ADHD™: Included 20 subjects
etal., ADHD"; contrast  decreased R striatal from ref. 54; even
198975 5 =13 ADHD subjects perfusion, increased “pure ADHD" group
+ other CNS as im occipital and L included measles
dysfunction; Ref. 54 sensorimotor and encephalitis, neonatal
13 (includes 4 auditory regions; MPH cerebral ischemia
“pure significantly increased L
ADHD™) striatal perfusion.
scanned pre-
and post-MPH
Lou n=9 “pure 15 Normalized striatal and  Included 23 subjects
etal., ADHD” (2F); contrast  posterior periventricu- from ref. 56; results

1990* n =8 ADHD subjects  lar perfusion decreased  not reported by side;
+ dysphasia; (6 new, in ADHD and ADHD+;  as in prior reports,

OF) TF) occipital perfusion subjects not matched
increased in “pure by sex or age, due to
ADHD” ethical and practical

constraints

Corpus Callosum

The corpus callosum is the largest interhemispheric commissure in the brain con-
sisting of approximately 200 million mostly myelinated fibers connecting homolo-
gous areas of the left and right cerebral hemispheres. Because of the orientation and
myelination of its fibers, the corpus callosum is readily identifiable on MR images
and most research groups have started by quantifying its mid-sagittal area. Although
total corpus callosum area has not differed from controls in any study, smaller ante-
rior regions have generally been found'®18 in ADHD subjects. The largest MRI
study did not confirm these differences when measurements were obtained from
images that did not control for the positioning of the brain.!* However, reanalysis
with images aligned to a standard orientation confirmed a smaller corpus callosum
rostrum in ADHD [mean rostral area 25.5 mm? (SD = 10.3) in 50 boys with ADHD,
versus 30.0 mm?2 (12.1) in 50 matched controls (t = 1.98, df = 98, p = 0.03, uncor-
rected) Castellanos ef al., 1999, unpublished data]. The rostrum is the most anterior
(and inferior) portion of the corpus callosum, and nearly all findings in ADHD
have been anterior. The one exception was based on 15 ADHD subjects that included
five stimulant non-responders. The authors found that the subgroup of stimulant
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non-responders had the smallest splenium area.!? Examination of their data shows
that their finding of a difference in the posterior corpus callosum would not have
reached significance without the inclusion of those five subjects. Given the known
heterogeneity and comorbidity of ADHD, we can speculate that posterior brain
changes may be associated with ADHD symptoms secondary to a learning disability,
which would explain the absence of benefits from stimulant treatment. For example,
in a sample of prematurely born children, posterior ventricular enlargement and pos-
terior periventricular leukomalacia were associated with worse performance on spa-
tial and visuoperceptual abilities, but not with behavioral problems such as
hyperactivity. 2

Prefrontal Brain

Smaller anterior corpus callosal areas are consistent with involvement of prefron-
tal cortical regions. Normally, the right anterior brain is slightly but consistently
larger than the left.?! Significant decreases of this asymmetry in ADHD have been
reported using computed tomography”> and MRE> 142324 Yolymetric measures
have also detected smaller right-sided prefrontal brain regions measured “en
bloc”1424 in boys with ADHD which were correlated with neuropsychological per-
formance on tasks that required response inhibition.? In the only published study to
date to report gray-white segmentation, right anterior white matter was also reduced
in ADHD boys.2* However, this difference must be interpreted with caution since the
patient group was two years younger on average than the controls (p = 0.12, n =15
per gr(;ulpo) and since white matter volume increases linearly with age within this age
range.”

Caudate Nucleus

The caudate nucleus and its associated circuits have fong been suspected to play
a pivotal role in ADHD.?6 Abnormalities of caudate nucleus volume!*?* or
asymmetry'*27.28 have been reported although the studies differ in whether the nor-
mal caudate is asymmetric, and whether this asymmetry normally favors the right14
or the left caudate. 2827 These inconsistencies may reflect differences in method-
ology and comorbidity. For example, the mean coefficient of variation in the two
studies that used single-slice area measures of the candate?”28 was 0.22 (SD 0.04),
which is significantly greater than the coefficient of variation in the studies that
reported volumes!424 (mean 0.14, SD 0.03, t = 3.20, df = 6, p = 0.02).

Putamen

Neither of the anatomic MRI studies that reported putamen volumes detected sig-
nificant diagnostic group differences!*2? although statistical power was insufficient
in one study to rule out type 11 error.?? It is worth noting that anatomic neurcimaging
findings in Tourettc syndrome have centered on the putamen,30-3! the striatal region
associated with primary and supplementary motor areas.
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Globus Pallidus

The output nuclei of the basal ganglia are the internal segment of the globus pal-
1idus and the substantia nigra pars reticulata, but the volume of the latter cannot gen-
erally be measured with MRI, and the size of the globus pallidus can only be
measured as a unit (lateral and medial segments together), and then only with diffi-
culty. Still, this region has been found to be significantly reduced in size in ADHD
subjects,”"29 although these two studies differed in finding the larger difference on
the left and right sides, respectively.

Cerebellum

An early computed tomography study found a trend towards greater cerebellar
atrophy in adults with a prior history of hyperkinetic minimal brain dysfunction.
In a quantitative study of 112 subjects, the volumes of the cercbellar hemispheres
were found to be significantly smaller in ADHD boy&14 In a follow-up study within
the same sample, the cerebellar vermis as 2 whole, and particularly the posterior-
inferior lobules (lobules VIII-X) were found to be significantly smaller in ADHD.
It is speculated that dysfunction of the cerebello—thalamo-prefmntal circuit may
underlie the motor control, inhibition, and executive function deficits encountered in
ADHD.

Smaller lobules VII-X were independently replicated in ADHD,** but also in
childhood-onset schizophrenia35 and in multiple-episode adult bipolar disorder
paﬁxems,36 demonstrating once again the non-specificity of most anatomic deviations.
Despite the caveats, there is increasing interest in understanding the role of the cere-
belium in non-motor domains such as cogpition 37 and in the modulation of emotions.

FUNCTIONAL BRAIN IMAGING STUDIES OF ADHD
TABLES 4-6

PET with [1SF]-ﬂuoro-2—deoxy-D—glucose (¥DG) was used to dermonstrate decreased
frontal cerebral metabolism in adults with ADHD,39 although inconsistent results in
adoles.cernts‘m‘42 led the authors to explore other techniques in ADHD.* Other investi-
gators have measured local cerebral blood flow, which is closely linked to neuronal
activity and tissue metabolism, with a variety of techniques including 133¥ enon inhala-
tion and single-photon emission tomography. Decreased blood flow has been found
in ADHD subjects in the striatum®* and in prefrontal regions.*> However, these results
must be interpreted cautiously because ethical constraints make if difficult to obfain
truly independent observations from normal control children. A more promising tech-
nique is blood oxygenation level dependent (BOLD) functional magnetic resonance
imaging (fMRI), which obviates the need to use ionizing radiation.

The BOLD fMRI technique was used in a study of 10 boys with ADHD and 6
controls, all of whom were scanned on and off methylphenidate while they per-
formed Go No-Go tasks. 0 The authors extended to methylpbenidate the observation
that stimulants improve performance in pormal children as they do in patients with
ADHD #7 In caudate and putamen, Vaidya and colleagues found a striking group dif-
ference. In the task with the faster stimulus presentation rate, methylphenidate
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increased the number of activated pixels in caudate and putamen in ADHD subjects,
but it had the opposite effect in the controls. In both caudate and putamen, controls
activated significantly fewer pixels when scanned while on methylphenidate com-
pared to drug-free scans. Perhaps equally interesting was the finding that patients
as well as controls activated significantly larger numbers of pixels in prefrontal
cortex on drug. This regional dissociation between prefrontal cortex and striatum is
consistent with the finding that ventral tegmental area dopaminergic neurons, which
mostly innervate prefrontal cortex, lack autoreceptors, while nigrostriatal dopamine
neurons have abundant numbers of autoreceptors.*® Diffcrences in neuronal autore-
ceptor regulation have been hypothesized to underlie the therapeutic effects of
psychostimulants,**-3! and the pattern of findings in the normal controls fits the
prediction that methylphenidate would increase activation in prefrontal neurons
by increasing synaptic and extrasynaptic dopamine levels; however, it would have
the reverse effect in the striatum by producing a regulatory inhibition of firing. If
replicated, these findings suggest that ADHD children differ qualitatively in striatal
dopamine regulation and that such a difference may reflect etiological factors. How-
ever, before accepting this interpretation, we must note that all the patients had been
medicated with methylphenidate until 36 hours prior to their scans. Since the normal
controls had by definition never been previously exposed to stimulants, the possibil-
ity that these findings reflect medication withdrawal effects must first be excluded in
replications and extensions of this work.

Frontal striatal circuits were targeted in another fMRI study using a sample of 7
adolescent boys with ADHD who were unmedicated or medication free for at least
one week before scanning and 9 controls.”? Subjects were scanned while performing
the Stop Task>? and a delay task that required synchronization of a motor response to
an intermittently appearing visual stimulus. The hyperactive subjects showed less
brain activity, predominantly in the right medial frontal cortex during both tasks, and
in the right inferior prefrontal cortex and Jeft caudate nucleus during the Stop Task.
They concluded, “the right inferior frontal lobe — and its projections to the caudate
— has been related to response inhibition.... It thus seems that the brake system of the
brain is localized to the right prefrontal lobe, and its underactivation in ADHD seems
to be the neural correlate of a less efficient inhibitory motor control”>2 (p. 895).

The principal limitation of fMRI explorations of ADHD is the exquisite sensitiv-
ity of the technique to even minimal movement during scanning. Vaidya and
colleagues*® found that using a bite-bar was essential in their study of children with
ADHD and child controls. Rubia et al.3% included only adolescents who were able
to remain sufficiently immobile in the scanner. Because physical restlessness
decreases with age,’ Bush and colleagues® studied eight adults who had a history
of childhoed onset and persistence into adulthood of ADHD and eight matched con-
trols using the Counting Stroop during fMRI. The Counting Stroop was used to avoid
verbal responses; rather than color words, subjects were shown words that were
repeated one to four times per presentation. Subjects were required to press the but-
ton corresponding to the number of words, and presenting number words that did
not match the number of presented words provided interference.’® Although both
groups of subjects showed the expected slowing of response times in the interference
condition, significant activation of bilateral anterior cingulate was only found in
the normal controls. In contrast, ADHD subjects significantly activated right and
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left inferior frontal gyrus, right and left insula, left candate, right putamen, right
thalamus, and left pulvinar. Thus, the absence of cingulate activation could not be
ascribed to a simple failure to activate a neural network, although the authors noted
that possible anatomic ditferences in cingulate volume, and stimulant medication
history could have confounded their results. Also, the cognitive task did not result in
sufficiently robust activation patterns to allow for single-subject analyses, which is
typically a strong point of fMRI studies. Thus, absence of activation could simply
reflect greater anatomic variability in the subjects with ADHD. Nevertheless, further
exploration with this task and technique in younger subjects is clearly warranted.

Despite the natural advantages of magnetic resonance scanning for ADHD, PET
still offers the only practical way of assaying the neurochemistry of the human brain
in vivo. For example, {fiuorine- 18] finorodopa ([”;F]F—DOPA) was used to label cat-
echolamine terminals in 17 unmedicated adults with ADHD.% [!3F|F-DOPA uptake
was significantly diminished in the left and medial prefrontal cortex of the ADHD
adults compared to the 23 controls, with no differences in striatum of midbrain
regions. By contrast, in 10 adolescents with ADHD, [18F]F-DOPA uptake in right
midbrain was sigpificantly elevated compared to 10 controls (p = .04, uncorrected
for multiple compzztritsom).58 Taken together, these preliminary results further sup-
port the notion that catecholamine dysregulation is central to the pathophysiology of
ADHD, and not just to its treatment. They also highlight the proposition that dopam-
inergic and noradrencrgic systems cannot be understood without taking develop-
mental effects into account.”

The utility of single-photon computed emission tomography, which is more avail-
able and less expensive than PET, was highlighted in an exciting preliminary
report.59 The highly selective dopamine transporier Jigand [123]-1-Altropane was
used in 6 adults with ADHD who were compared to a database of 30 healthy con-
trols. Striatal binding potential ( Bipa/Kq) was elevated in all 6 ADHD patients, with
each patient exceeding the mean values of the corresponding age-matched controls
by at least 2 standard deviations. This finding, if replicated in a Jarger sample, will
raise many questions. will similar resulis be found in younger subjects? Are
increased numbers of striatal dopamine transporters related to the etiology of
ADHD, or to compensatory attempts at regulating striatal dopaminergic tone? Are
the effects related to prior medication exposure?

SUMMARY

Taken together, the results of the imaging and neuropsychological studies suggest
right frontal-striatal circuitry involvement in ADHD with a modulating influence
from the ce!rebelluum.f’0 The cortico-striatal-thalamic circuits select, initiate, and exe-
cute complex motor and cognitive rcespmnses,61 and cercbellar circuits provide on-
line guidance of these functions.®? Involvement of right frontal-striatal circuitry is
supported by studies of non-human primates in which “lesions of the (frontal lobe)
lateral surface appear to be effective in causing hyperactivity to the extent that they
interfere with orbital and other projections passing to the caudate”® (p. 75) and by
neuropsychological studies which demonstrate right-sided frontal-striatal dysfunc-
tion in ADHD.*
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The theoretical implications of current anatomic findings in ADHD are tentative.
Consistent replication by independent centers and guantification of finer cerebral
subdivisions is needed. Besides issues of inadequate statistical power in most stud-
ies, which is a considerable problem because of the high degree of variability in ana-
tomic brain measures,'? none of the studies published to date has accounted for
possible sources of confounding such as prior medication cxposure. While future
anatomic studies will focus on these issues, functional imaging studies are likely to
become increasingly important in understanding the neural substrates of ADHD.

Can MRI Be Used to Diagnose ADHD?

MRI is not currently diagnostically useful in the routine assessment or manage-
ment of ADHD. It is important to note that the anatomical differences noted are
detected when looking at groups of children with and without ADHD. An individual
may or may not have alterations in these brain arcas. Although the brain imaging
studies have been useful in helping us understand the key brain components involved
in the illness, they are not currently specific enough to be used diagnostically.

If a child has a clinical history of ADHD but a normal brain scan, clinicians
should not be deterred from treating. Conversely, if a child has no symptoms of
ADHD but a brain scan consistent with what is found in groups of ADHD, treatment
for ADHD is not indicated. Therefore, at the time of this writing, clinical history
remains the gold standard of ADHD diagnosis.

There are several instances when brain imaging may be useful in the evaluation
of ADHD:

1. when the ADHD symptomatology is accompanied by significant neurolog-
ical abnormalities;

when there are comorbid psychotic features;

3. when the presentation is very atypical and unresponsive to conventional
treatment approaches; or

4. in the case of identical twins where one has ADHD and the other does not.

So, although imaging is currently not of diagnostic utility in ADHD it may help
to uncover the core neuropathology of the disease and may be useful in certain clin-
ical situations. Imaging studies may help educate the families and the public that
ADHD is a biological entity. Imaging may some day allow us to subclassify different
types of ADHD, which may guide treatment interventions.
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